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Abstract. Interaction recognition is an important part of action recog-
nition and has various applications such as surveillance systems, human
computer interface, and machine intelligence. In this paper, we propose a
novel group-sparsity-optimization-based feature selection model for com-
plex interaction recognition. Firstly multiple local and global features are
concatenated into a feature pool, and then based on the group sparsity
optimization, different feature types are automatically selected to fit spe-
cific interaction categorization. We test our method on the benchmark
dataset: the UT-interaction dataset. Experimental results substantiate
the effectiveness of the proposed method on complex interaction recog-
nition tasks as compared with current state-of-the-art methods.

1 Introduction

Action recognition aims to recognize the ongoing action from an unknown video.
This technique has a variety of potential applications, such as intelligent surveil-
lance systems, human computer interface, machine intelligence et al. In the past
decades, the research focus was mainly on the task of single-person action recog-
nition [1, 2] and good performance was achieved. In some typical datasets [3,
4], the recognition accuracy has reached over 90% [5, 6]. Good progress for
single-person action recognition makes many researchers devote efforts to the
interaction recognition which is a more complex recognition task. Besides the
challenges of background clutter, partial occlusion and the perspective effect,
compared with single-person action recognition, the interactive action recogni-
tion task additionally suffers from: (1) variations within an interaction among
different performers; (2) similar patterns among different interactions or with
background interference.

Various methods [7–9] have been proposed to address this challenge in recent
years. Among them, methods under the framework of machine learning have
received more attention. Most of such methods try to recognize various inter-
actions using only one feature or one concatenation of features. Although good
performance can be achieved among classes with more prominent discrimina-
tion, classes with obscure discrimination were always recognized poorly. It is a
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Fig. 1. Three image pairs demonstrate one-vs-one interaction classification of (a) “hug”
and “kick”; (b) “punch” and “push”; (c) “kick” and “push”. The bigger shadowed-areas
and smaller bounding boxes respectively indicate global and local regions containing
discriminative information for classification. Each pair of bounding boxes of comparison
is colored differently. The strokes around human torsos indicate the interaction pose of
two performers.

challenging task to improve accuracy on interactions with obscure discrimination
while still keep high accuracy on interactions with prominent discrimination. In
[10], the recognition accuracy of interactions “hug” and “kick” were above 95%,
but only around 70% for “punch” and “push”. One reason is that the former
two interactions are different from other interactions in a more prominent way,
while the latter two interactions have more obscure discriminative information.
As shown in Fig. 1, between “hug” and “kick”, the region which provides dis-
criminative information is prominent and large, so a global feature such as the
popular dense trajectory would be sufficient. However, between “punch” and
“push”, discriminative information is obscure and exists only in small local ar-
eas. In this case, local features around those areas have to be rationally utilized
to provide effective description. Differently, in “kick” and “push”, both global
and local areas can provide some discriminative information, but not typical
enough when being considered separately. Therefore, it is more reasonable to
combinationally consider multiple feature types here. Faced with various classes
of interactions, the questions are, which types of features should be chosen and
how can this choice be made automatically.

To answer these questions, in this paper we propose a novel feature selection
model for interaction recognition. The proposed model automatically learns to
select feature types which optimize the recognition. We choose multiple local
and global features and concatenate them into a feature pool, and our model
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selectively learns the best feature types from the pool. To the best of our knowl-
edge, it is new to utilize the group sparsity for human interaction recognition.
We test our method on the interaction benchmark, the UT-interaction dataset,
and experimental results demonstrate the effectiveness of the proposed method.

The rest of paper is organized as follows: Section 2 reviewed related methods
of interaction recognition. The features we utilized are introduced in Section 3.
In Section 4, how our model selects feature types and why it has feature selection
capability are explained. Finally, Section 5 exhibits experimental results.

2 Related work

As compared with the action recognition problem, which has been investigat-
ed for more than a decade, the interaction recognition has not attracted much
attention until the first attempt by Oliver et. al [11]. This method handled the
interaction recognition problem by employing motion trajectories obtained from
blob-tracking of human. Another remarkable milestone is the successful use of
a new spatio-temporal feature detector [12] in action recognition which received
much attention in the field [13–16]. Its invariability under illumination change
and noisy background has largely benefited the action recognition task under
real-world scenes. Recognition based on key frames [17, 18] is also a widely-used
method in interaction recognition. These methods analyzed descriptors extract-
ed from key frames of a video, trying to model the relations between interactions
and poses of key frames, while somewhat underused the contextual information
of motion trajectory. To utilize contextual information within an interaction, a
respectable amount of works have been presented to model the context of inter-
actions [19, 20]. By presenting interactions by action context descriptors, in [20],
action context was encoded by interactive phrases which were composed of atom-
ic actions of elementary movements, namely attributes. Their method obtained
improvement compared with previous methods. However, in this method, the
attributes need to be manually labeled and specified to certain data sets, which
makes the method less automatic in recognition and less scalability onto other
data sets. In many works, fusion of multiple features was used to balance the
contribution of each feature type. In [21], training scores of each feature type
were employed as an input to learn the fusion weight vector. However, these
methods tend to lose the discriminative description of combined features at the
early-fusion stage. Our method capitalizes on selecting feature types using the
group sparsity technique and feature types are selected before training. To realize
group sparsity, a weight vector indicating the importance of all sample features
is involved. The L2,1-norm is imposed on these weights to enforce its group s-
parsity on simultaneously selecting certain scales of features. Results show that
our feature selection model makes feature-fusion more effective. Although there
exist some feature selection models [22][23] , it is new to use group sparsity to
achieve the feature selection goal in interaction recognition.
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3 Interaction representation

We utilize five scales of features as a feature pool, including three features for
local context and two for global context. The local features are extracted based
on images. We use the pedestrian detector [24] to detect each interacting person
and his body parts in one image and thus 1 full-body bounding box and a
group of 8 body-part bounding boxes for one person can be obtained. The first
and second local features are the HOG of full-body bounding box and body-
part bounding boxes, respectively. The third local feature is the configuration of
body-part bounding boxes. The global features are extracted along the complete
video based on dense trajectory. It should be noted that our method represents
a general implementation scheme, and any other local or global features can be
readily integrated to further extend its capability.

Body-part 

HOG 

(𝑥1, 𝑦1), (𝑥2, 𝑦2), 𝑥3, 𝑦3 … (𝑥7, 𝑦7), (𝑥1, 𝑦1) 

Full-body 

HOG 

Configuration Vector 

Individual stage 

Targeting stage 

Interacting 

stage 

Individual 

stage recur 

Local Feature Pool 

Fig. 2. The left demonstrates Interacting Stage Detection process: Frame-sequences
of the four stages are represented and the right-side curve corresponds to the changes
of gray-level differences during the stages. The right shows how local features: full-
body HOG, body-part HOG and body-part configuration vector are extracted from
the interacting stage. On top of the right is the concatenated local features.

3.1 Local feature representation

Local feature representations are important in interaction recognition, since in
some interactions the discriminative information is obscure and exists only in
small local regions with few frames. In order to properly recognize these inter-
actions, we need to make full use of discriminative information of local regions.
In our work, we utilized three types of features as the representation of local
regions.

Instead of using the whole video for local feature extraction, the core part
of video is used in this paper. According to our observation, most interactions
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can be regarded as a four-stage sequential transition including: individual stage,
targeting stage, interacting stage, and individual stage recurrence. Only the in-
teracting stage, which provides more prominent in this state is to our interest.
This is mainly due to two reasons. Firstly, when a video is regarded as frames,
the other three stages, including individual stage, targeting stage and individual
stage recurrence, might appear very similar among different interactions, which
inclines to reduce the distinguishability among interaction classes. Secondly, the
other three stages are of much randomness, and may not be contributory to the
classification since how performers would like to act before or after they interact
is much up to their willingness.

Interacting stage detection Fig. 2 demonstrates the process of the interacting
stage detection. In order to automatically detect the third interacting stage, for
each video we compute the gray-value difference between each two consecutive
frames and the difference value of each pixel is added up, thus obtaining a gray-
value difference curve. According to our experience, the curve is saddle-shaped
with two peaks which respectively indicates the starting and ending frames of
the interacting stage. To get the starting and ending frame numbers of the
interacting stage, we employ an n-degree curve fitting

y = axn + bx(n−1) + cx(n−2) + ...+ dx+ e (1)

to smooth the curve with an initial n = 10. If more than 2 local maxima is found
in the fitted curve, we continue the curve fitting with increased n till only 2 local
maxima are left. The frame numbers which correspond to the maxima are used
as the starting and ending frames of the interacting stage. Frames between the
two frames are those which we later extract local feature from.

Local HOG We try to detect the local regions where discriminative information
is more likely to exist. So features are extracted only in regions where full-body
and body-part bounding boxes are detected.

Histogram of gradients (HOG) [25] is a powerful description of texture in ac-
tion recognition [24, 26, 27], so we use it as a feature of the detected local regions.
We resize each bounding box to 64 × 128 using nearest neighbor interpolation,
and then an 8× 8 grid is superimposed upon each full-body bounding box and
body-part bounding box corresponding to each interacting person. Finally, a
full-body local descriptor with a size of Sf = 8× 16× 31 and a body-part local
descriptor with a size of Sp = 64 × 16 × 31 are obtained for each interacting
person.

Body-part configuration Besides texture description using HOG, spatial in-
formation of tracked body-part is another type of description for local regions.
Fig. 2 demonstrates the extraction process of this local feature. According to our
observations, the configuration of body-part bounding boxes is discriminative a-
mong different interactions. In some obscurely discriminative interactions, such
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spatial information of body parts can be important clues when texture of local
regions appears similar. We employ the relative location of detected body-part
as a representation of configuration. Concatenation of coordinate centers (xb, yb)
of 8 body-part bounding boxes, where b = (1, 2, ..., 8) is used in our work and
thus a configuration vector of length 2× 8 is obtained.

In order to cover the discriminative regions as much as possible, three types
of local features are used, including full-body HOG, body-part HOG and body-
part configuration covered both texture and spatial description. Moreover, the
texture description is of both larger and smaller local regions which is more
comprehensive compared with [18, 21], in which texture descriptions were only
refined to the full-body scale.

3.2 Global feature representation

In videos, motion is a most informative cue for action recognition, and the mo-
tion trajectory is one of ways to describe motion. The dense trajectory extraction
method described in [28] is popular in action recognition in recent years. We em-
ploy this method in interaction recognition to obtain a good representation of
interaction trajectory. In our work, interactive motion is tracked, which forms a
trajectory of interest points, and descriptors are extracted along the trajectory.
The more detailed process includes three steps. Firstly, densely sampled points
at multiple scales are tracked using the optical flow method used in [29]. Sec-
ondly, we track the sampled points to form trajectories. Finally, descriptors are
computed by space-time volume around the trajectory. We utilize state-of-art
descriptors including HOGHOF which shows prominent performance on various
datasets [15, 30], and the motion boundary histogram (MBH) [31] which can
capture the relative motion between pixels both vertically and horizontally. The
two descriptors are computed in the same parameter setup as in [28]. As a result,
two types of global features based on trajectory are obtained with the size of
204 for HOGHOF and 192 for MBH.

All together we used 5 types of features of both local and global representa-
tion. Each type of feature has different representation capability, and by utilizing
them, we try to capture discriminative information which might exist in texture,
brightness and spatial locations. Before we concatenate them into a feature pool,
a powerful fisher vector tool [32] is employed to encode each type of feature.
Therefore, the final feature pool consists of 5 types of encoded features.

4 Intrinsic feature selection model

With multiple types of features obtained, the easiest way is to concatenate all
of them into one feature and directly use it as an input of a machine learning
model. However, as we analyze earlier in section 2, the recognition complexity
is not always on the same level among different interactions. For interactions
with prominent discriminative information such as “hug” and “kick”, features
at global scale would be sufficient, but such features are not sufficient for those



Feature Selection Model for Complex Interaction Recognition 7

with obscure discriminative information such as “punch” and “push” which share
similar patterns that can even be confused by human eyes. So in order to achieve
good performance among interactions with obscurely discriminative information,
we have to utilize local features to make up for or even replace the insufficien-
t description of global features. However in practice, interactions are not just
divided into two poles of complexity. There exist different mixtures of discrim-
inative information which correspond to the concatenation of different feature
types, and it is difficult to decide which feature types should be selected. To ad-
dress this problem, we formulate the feature selection into a learning process, in
which feature types are selected according to how well they perform. Aiming at
effective feature selection, our method uses the group sparsity technique [33] and
feature types are selected to optimize the recognition performance. The samples
as well as features can also be simultaneously selected during training based on
the intrinsic mechanism of SVM. More details are presented as follows.

4.1 Formulation of our model

Given an input video, we extract K types of features from it and formulate a
concatenation of K types of features with total dimension d = d1 + d2 + ... +
dk. In order to enable the model with feature selection capability, we define a
weight vector α = (α1, α2, ..., αd)T , where the elements of α can be grouped into
(α1,α2, ...,αk) according to the lengths of K feature types. Hence the weighted
feature group is presented as α� x. Given the ith sample xi with label yi, the
interaction recognition problem can be formulated as an optimization problem:

minω,b,α
1

2
‖ω‖2 + C

∑
i

(1− yi(b+ ωT (α� xi)))2+ s.t. ‖α‖2,1 ≤ s, (2)

where ω is the model parameter, b is the offset value, C is the cost coefficient
and s is the constraint of ‖α‖2,1. In Eq. 2, L2,1-norm of α can be written as

‖α‖2,1 =

K∑
k=1

‖αk‖2.

By optimizing Eq. 2, we can simultaneously make the calculated ω and α sparse.
α is sparse among K feature groups while dense within each type of features,
which indicates that this model can have both sample selection and feature
selection capability.

4.2 Learning and inference

Inference: Given the model parameters ω, α and b, the inference problem is to
find the right interaction class label y for a test video x. We define the following
function to score x.

y = b+ ωT (α� x). (3)
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Fig. 3. The testing procedure: two global features (shown at the bottom) and three
local features (shown on the top) are extracted from the test sample, and a concatena-
tion of five features is shown as the rectangular patches in five colors in the middle. A
set of trained α which corresponds to feature selection, ω and b, correspond to a test
score calculated with the score function. The class which has the highest score is the
test result of this video. The recognition result is “handshake” as shown, which rightly
matches the interaction class.

The complete inference procedure is demonstrated in Fig. 3. Five features are
extracted from the test video to form a feature pool. We employ the one-vs-
one classification method in the learning phase, so between each two interaction
classes there is a set of trained ω, α and b, corresponding to a test score calcu-
lated with Eq. 3. The class which has the highest score is the test result of this
video.

Learning: Given N training samples (xn, yn)(n = 1, 2, ..., N), the training
task is to learn the model parameters ω, α and b. Our optimization algorithm
includes mainly two steps to iteratively learn these three parameters.

(1) Holding α fixed, the optimization problem is:

minω,b
1

2
‖ω‖2 + C

∑
i

(1− yi(b+ boldsymbolomegaT (α� xi)))2+, (4)

which can be written as

minω,b
1

2
‖ω‖2 + C

∑
i

(1− yi(b+ ωTQTxi))
2
+,

where Q = α1 0 0

0
. . . 0

0 0 αd
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is a diagonal matrix. The optimization problem above is a standard SVM [34]
model and can be directly solved by virtue of off-the-shelf tools, among which
LIBSVM described in [35] is adopted.

(2) Holding ω, b fixed, the optimization problem is,

minα
∑
i

(1− yi(b+ ωT (α� xi)))2+ s.t. ‖α‖2,1 ≤ s, (5)

which can be written as:

minα
∑
i

(1− yi(b+αTPTxi))
2
+ s.t. ‖α‖2,1 ≤ s, (6)

where P = ω1 0 0

0
. . . 0

0 0 ωd


is a diagonal matrix and s is constraint parameter that controls sparsity level.

For being better solvable, the constrained optimization problem of the Eq.
6 is transformed into a unconstrained optimization problem with Lagrangian
expression as follows:

L(xi, yi,α,λ) =
∑
i

(1− yi(b+ ωT (αTPTxi)))
2
+ + λ‖α‖2,1, (7)

Under certain λ, this is a convex optimization model with respect to α, and
can be readily solved by gradient descent method [36]. We can then derive α
based on the obtained result. The appropriate λ can be properly specified by
cross-validation.

5 Experiments

We test our method on the UT-Interaction dataset. This dataset consists of 20
videos in total, containing 6 classes of human-human interactions: “handshake”,
“hug”, “kick”, “point”, “punch” and “push”. On average, there 8 instances of in-
teractions per video and each video contains at least one instance. According to
the filming condition, the dataset is divided into two sets. Set 1 is recorded at a
parking plot with a stationary background, and Set 2 is recorded on a lawn with
slight background movement and camera jitter. In accordance with experimen-
tal settings of the recognition task described in High-level Human Interaction
Recognition Challenge [37], bounding boxes are used and the performance of
our method is evaluated using leave-one-out cross validation on each set. The
information of main actors (standing on the left or right side) is provided in the
dataset as ground-truth. However, we did not use this information since it is
hard to be obtained in realistic situations.
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5.1 Implementation details

By using the interacting stage detection method mentioned in Section 3, we
obtain frames of the interacting stage upon which we detect a full human body
and 8 body parts of each interacting person using the deformable part-based
model [24]. To ensure at least two interacting person detection results, we set
the detection score threshold at a lower threshold = −1.5 compared with the
default threshold = −0.5. And the Top two detection results of the rank list are
chosen as the interacting person detection results.

We compute HOG of each full-body bounding box and body-part bounding
boxes as described in [24]. Next we compute HOGHOF descriptor and MBH
descriptor as described in [28]. Fisher vector is utilized to generate a codebook
for each feature type.

When generating codebooks, the number of Gaussians G in Gaussian mixture
model is an important parameter, so we evaluate a variety ofG on UT-interaction
dataset with HOGHOF, MBH and their combinations. We process parameter
search, and it turned out the best performance is obtained when G = 65. Model
parameter C and λ are optimized using cross validation.

HS Hug Kick Point Punch Push 

HS 100 

Hug 100 

Kick 100 

Point 10   90 

Punch 10 90 

Push 100 

HS Hug Kick Point Punch Push 

HS 90 10 

Hug 100 

Kick 100 

Point 10 10 80 

Punch     90 10 

Push 100 

(a) (b) 

Fig. 4. (a) Confusion matrix of our method on Set 1 of UT-interaction dataset. (b)
Confusion matrix of our method on Set 2. Note that “HS” stands for “Handshake”.

5.2 Results

Fig. 4 shows the confusion matrix of the Set 1 and Set 2 in the UT-interaction
dataset. It can be seen from Fig. 4 that the interactions “hug”, “kick” and
“push” are recognized better than other interactions, and achieve 100% recog-
nition precision. In addition, the interactions “handshake” and “punch” which
are usually regarded as interactions with obscure discriminative information with
lower average precision [37, 10], also achieve precision above 90% for our method.
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Relatively, “point” is the difficulty-recognized class, with a precision of 85%, s-
ince it is a special class in the dataset, with only one performer performing the
action. Performance on Set 2 is not as good as on Set 1 in “handshake” and
“point”, since Set 2 is filmed with camera jitter and partial occlusions of the
background. Among the interactions with obscure discriminative information,
“handshake” is slightly confused with “hug” in Set 2, and “punch” is misclas-
sified as “push” in Set 2, which indicates that clutter increases the difficulty of
recognizing interactions.

Table 1. Per-class precision (%) on UT-interaction dataset. 7 previous methods are
compared with ours according to their average degree of precision. Average precision
is listed in the last column.

Methods Handshake Hug Kick Point Punch Push Average

Ryoo et al.[37] 75 87.5 75 62.5 50 75 70.8
Waltisberg et al.[10] 60 95 100 100 75 60 81.5

Yu et al.[14] 100 65 75 100 85 75 83.3
Ryoo et al.[26] 80 90 90 80 90 80 85

Patron-Perez et al.[21] 95 95 85 - 65 85 85
Kong et al.[20] 100 90 100 80 90 90 91.67
Vahda et al.[18] 85 100 95 95 80 95 92
Our Method 95 100 100 85 90 100 95

We also compare our classification accuracy in each interaction class with
the methods proposed in [37, 10, 14, 26, 21, 20, 18] and the results are listed in
Table 1. From Table 1 we can see that our method keeps high accuracy among
interactions with prominent discrimination such as “hug” and “kick”, mean-
while improves accuracy among interactions with obscure discrimination such
as “punch” and “push”. Best average precision is achieved using our method
compared to the other 7 competing methods as well as best accuracy among
four interactions out of six. Among interactions with obscure discriminative in-
formation, our method prominently outperforms state-of-art methods, especially
in “punch” and “push” which demonstrates bad performance in most previous
methods. However, “point” does not show strong performance in our method.
This is since “point” is an exceptional class in the UT-interaction dataset, con-
taining only one person performing the activity with no interaction information.
Since our model is specifically designed for capturing interaction information
between humans, it might not be so appropriate for this specific class. Yet our
method still gets a reasonable result on this class (85%), comparable to most
current methods along this line.

The average precision of all competing methods on each set are listed in
Table 2. Our method achieves 96.7% and 93.3% precision on Set 1 and Set 2,
respectively, which shows that our method outperforms the state-of-art methods
on both sets.
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Table 2. Average precision (%) on UT Interaction Dataset Set 1 and Set 2. Three
state-of-art methods are compared.

Methods Set1 Set2 Average

Waltisberg et al.[10] 83 80 81.5
Patron-perez et al.[21] 84 86 85

Vahdat et al.[18] 93 90 92
Our Method 96.7 93.3 95

5.3 Conclusion

In this paper, we have proposed a novel group-sparsity-optimization- based fea-
ture selection model for complex interaction recognition. We have used various
combines of feature types with different representation capacity to recognize in-
teractions with different prominent/obscure discrimination. Aiming at this goal,
we have proposed a model which automatically selects feature types for specif-
ic interactions. We test our method on interaction benchmark UT-interaction
dataset and extensive experimental results show the effectiveness of the pro-
posed method for complex interaction recognition tasks compared to the state-
of-the-art methods. Specifically, our method improves accuracy on interactions
with obscure discrimination, while still keeps high accuracy on interactions with
prominent discrimination.
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